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NUMERICAL SIMULATION OF PROPOSED SURFACE DIFFUSION EXPERIMENTS

John P. Brainard and Bruce Goplen

ABSTRACT

This report describes two possible experiments to measure the sur-

face diffusion of sodium on metal substrates.

Based on estimated data,

numerical caleulations were performed to simulate these experiments,
and judgments were formed as to their feasibility.

INTRODUCTION

Surface Diffusion of Sodium

Three general mechanisms by which sodium can
transfer in sodium loops are: momentum transfer,
gas diffusion, and surface diffusion. All transfer
mechanisms must be considered when instrumenting a
sodium loop; sodium that transfers in an unknown
manner can perturb the desired results. Knowledge
of all transfer mechanisms is important to safety
in the event of fuel-pin or sodium-containment rup-
tures. Of these three transport mechanisms, sur-
face diffusion is the least known.

Two experimental techniques, one called "flash-
wire'" and the other "hot-point," have been consid-
ered for determining surface diffusion rates. Both
involve placing sodium on a wire and measuring its
evaporation from that wire.

The "flash-wire" experiment involves placing
some unknown, but reproducible, sodium distribution
on a wire at a predetermined temperature. A wire
rather than a ribbon is used to avoid edge effects.
After some time the wire is flashed to high temper-
ature with subsequent desorption of the sodium.!

A hot ribbon detector some distance from but par-
allel to the wire interrupts some of the desorbed
sodium. This sodium is surface ionized, and the
rate of ionization is measured as a current to a

collector filament.2 The hot ribbon detector is

designed to have a potential drop of about 30V down
its length. By gating a grid between the ribbon
detector and the collector, the collector current
can be associated with sodium desorption at a par-
ticular position on the wire, and the sodium density
distribution along the wire can be measured. Meas-
uring the distribution at two different times gives
enough information to determine the surface diffu-
sion rate.

The "hot-point! experiment involves depositing
sodium continuously at some known rate on a region
of the‘wire which is small compared to its total
length. The wire is at some predetermined tempera-
ture. At each extremity of the wire is a hot point.
As sodium arrives at these points, it is removed by
desorption. The desorbed sodium is ionized and
collected. The current measured eventually builds
up to a maximum when the rate of desorption equals
the rate of sodium deposition. The surface diffu-
sion rate can be obtained by observing the buildup
in current with time.

To allow comparison of experimental techniques,
a computer program was required to simulate each of
the methods using estimated data. The resulting

effort is the subject of this report.
SUMMARY

A computer code named SWEETBRIAR has been
written in FORTRAN IV for the IBM 7030 to solve the



surface diffusion equation with evaporation term in
one dimension,

a2 kLY
DH}-Rn € (1)

The calculation is in finite difference, and the
extrapolated Liebmann technique is used to speed
convergence. The code has been checked against two
analytic solutions: the Dirac delta and a Fourier

square wave.

Three types of problems may be considered. The

first is the straightforward case in which diffusion
rate, evaporation rate, and initial concentration
distribution are all known or assumed. The second
case, of more interest experimentally, is the
"flash-wire' in which the concentration distribution
is known (measured) at two different times. Given
this information, the program calculates diffusion
and evaporation coefficients. The third case, also
of experimental usefulness, is the "hot-point'" pro-
blem in which mass deposited at a constant rate on
one point of an initially bare wire is evaporated at
two hot points, and a characteristic time of equi-
librium (mass deposition rate = evaporation rate) is
measured. .

Examples of the three solution techniques and
several cases involving experimental data are in-

cluded below, along with a code input.
CONCLUSION

This study has shown that the "flash-wire'
experiment does not appear to be the most practical
method of obtaining surface diffusion coefficients.
The measurement of sodium distribution must be done
within a few minutes of the time of initial distri-
bution at room temperature to within a few milli-
seconds at 500°C. Also, the flashing of the wire
must be very fast to prevent change of the sodium
The flashing
has to raise the wire temperature well over 1000°C

Further, the "flash-wire"

distribution during the measurement.

in a few microseconds.
experiment requires two runs with reproducible ini-
tial distribution, and this may be very difficult to
obtain.

The "hot-point" experiment, on the other hand,
looks more promising. Much longer times can be
taken for measurement. Also, enough data can be ob-
tained from a single run to determine the diffusion

coefficient. Since surface diffusion is strongly

influenced by temperature, it is well to keep tem-
peratures fixed during the experiment. This can be

accomplished in the '"hot-point" method.
CALCULATIONAL TECHNIQUE

The general one-dimensional diffusion equation
with evaporation term,

32n _ on
D oz Rn = 3t ° 1)

(see Nomenclature list at end of report) can be ex-

pressed in finite difference as follows:

DAt

ny(t) + 5 . [éJ_l(t+At) + nJ+1(t+Atﬂ

(Ax) J
ny(t+at) = DAt

1 + RAt + 2 ——

(ax)

(2)

Values of ny_y and nJ+1 are taken at t+At to

help convergence. To allow use of a sizable time

step, an iterative scheme is used:

‘ DAt
n (t) + I I-1 j
1 J (ax)° ["J-l(“*“) * Ry (0488)]
n_ (t+At) = Dat
J 1 +RAt + 2 —5
(8x}

(3)
Concentrations without superscripts represent
converged values, and the first iteration (I=1) re-
. . I-1
quires that nJ+1(t) be used instead of nJ+l(t+At).
Convergence implies that all nodes have satisfied

the following criterion:

I I-1
nJ(t+At) - ny (t+at)] < €. 4)

Finally, to speed convergence, an extrapolation
technique is used, in this case the Liebmann method.
There is no physical significance involved; rather
it is simply a means of extrapolating from the pre-
vious iteration to achieve faster convergence. The
final form of the diffusion equation solved in the

program is then

n}(ti-At) = (1-8) n}-l(t#At)

‘nJ(t) . DAt2 [%}_1(t+At) + n;:i(t+Atﬂ
(8x)

+ 8 DAt ’ (s)

1 + RAt + 2 -
(ax)

where possible values of the Liebmann parameter, 8,
are from 1.0 to 2.0.

Some remarks regarding various parameters in



Eq. 5 are in order. First, from a consideration of
the case in which only evaporation takes place, it
is clear that the denominator of the second term
must remain linear. That is, from the analytic

solution of Eq. 1 for D=0,

2 ve (6)
o
1
= T¥ Rat ™
only if
RAt < g << 1. (8

Second, we tried to maximize the dimensionless
quantity DAt/(Ax)2 to increase the size of the time
step. Results of many calculations indicate a con-
vergent solution if

DAt

< 20. (9)
(ax?

Similarly, an attempt was made to minimize the
number of iterations required by varying the Lieb-
mann parameter, B. Acceptable values were found
between B = 1.0 and 1.8, whereas the case B = 2 was
always divergent., Note that the case 8 = 1.0 corre-
sponds exactly to Eq. 3. Minimum machine time was
generally obtained at about 8 = 1.6, and all subse-
quent cases were run using this value. The time
saving over use of Eq. 3 is roughly a factor of
three.

The calculation has been checked against two
analytic solutions, the first of which is the Dirac

delta function. Its properties are

§(x) = 0 x £ 0
b (10)
§(x)dx = 1 a,b>0.

-a

Identifying the delta function with initial concen-
tration distribution corresponds physically to nor-
malized mass deposited at a point at time equals
zero. Beginning with Eq. 1, the substitution
u(x,t) = n(x,tye Rt (11)

eliminates the evaporation term, yielding

b azu(:zc,tj - 3U§Jtc.t) , (12)

X

which is easily solved using the method of Green's
functions. That is

u(x,t) =ﬁ(x,x',t) u(x!,o)dx, (13)
with the condition

u(x',0) = n(x',0) = §(x') (14
and the Green's function3 obtained by Fourier trans-

forming the x variable,

_(x-x")?
G(x,x',t) = L. 4Dt , (15)
2VaDt
yields
.
u(x,t) = —=—e P°, (16)
2VaDt
and finally
2
x
~{+= + Rt
n(x,t) = —L1_ e (“Dt ) (17)
2ViDt

This initial distribution was simulated in the
finite difference calculation with a very narrow,
normalized square wave. A comparison of this re-
sult with Eq. 17 is shown in Fig. 1. Only the

right side of the symmetric distribution is shown.

9
3 | I
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Fig. 1. The Dirac delta solution.



The second analytic solution used in checking
the finite difference calculation was the Fourier

square wave. Beginning from Eq. 12,

= =T (12)
and assuming the solution u(x,t) to be separable,

u(x,t) = X(x)T(t)

gives

pr(e) L2E Ly IO
dx

or

D d2x(x) _ 1 dT(t)
X(x) ax T(t) dt

(18)

But since t and x are independent variables, Eq. 18
must equal some constant, k. The resulting two

equations are,

. .
LX) % X(x) = 0 (19)
dx
and
deE - KT(t) = O. (20)

Now a particular solution that fits the bound-
ary condition is found using Fourier analysis,

1 a a
a, "2°%*°2
n(x,0) = . (21)

0, otherwise
This solution is actually periodic, but the period
is chosen large enough to approximate the boundary

conditions (21). The even Fourier cosine series,

X(x) = ag + Z a cos ."jmi, (22)

m=1
where £ equals one-half the period, satisfies Eq. 19
and has coefficients, a. determined by integration

of an orthonormal set over the period 2£, giving,

1
) A
a = -2 sip mrd (23)
m amn 27

Substituting Eq. 22 in Eq. 19 gives,

from which Eq. 20 yields,
m?r2Dt

2
T(t) = e £ . (24)

Combining Eqs. 11, 22, 23, and 24 gives the

complete solution,

1l -Rt
n{x,t) = — e
(x,t) Y
m?x2p
+ 2 sin I8 o5 21X ¢ -( L A (25)
& mua 1 22 £ °

It is illustrated in Fig. 2 along with the corre-

sponding finite difference solution.

I I
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NORMALIZED MASS
D=10"2 cMm2 SECT!
R0 ]

S

—— ANALYTIC SOLUTION

e FINITE DIFFERENCE
SOLUTION

|- 2.5 SEC —

N

T
1

CONCENTRATION (MOLECULES/CM)

o
|
—

DISTANCE (CM)

Fig. 2. The Fourier square-wave solution.

Because of sparse data on sodium, we have used
surface-diffusion estimates of indium on tantalum"
and evaporation rates of sodium on gas-covered and
atomically clean tungsten.5 These estimates are

shown in Fig. 3. These data are believed to be rep-
resentative of an alkali metal on a refractory metal.
Figure 4 is the result of computer runs for a gas-
covered refractory metal at various temperatures.
Gas-covered tantalum was chosen because of the
higher evaporation rate. A square wave of 500-mole-
cules/cm concentration and 0.2-cm width was assumed

as an initial distribution in all cases. (Concentra-




tion may be adjusted to any desired level by multi-

plication.)

DIFFUSION COEFFICIENT , D (CMZ/SEC)
EVAPORATION COEFFICIENT, R (SEC™)

0 -~
10 .
16° -
\ 6I! ]
|o'“ 1 1 1

00 i.0 20 30 40 50 60 70
7T x 10306
Fig. 3. Estimated diffusion characteristics of in-

dium on tantalum.

In practice, it would not be possible to start
from an initial square wave distribution, but it may
be possible to determine distributions at two dif-
ferent times during the diffusion process, and from
this information the evaporation and diffusion co-
efficients can be obtained. This '"flash-wire" ex-
periment is the second type of case solved by SWEET-
BRIAR. Given two concentration distributions at

times O and t', the solution for evaporation coef-

ficient becomes analytic. That is,
_oN
-RN = 3t
gives
_ -Rt

or, in finite difference,

JMAX
" ez0

R=o1n [J=1 . (26)

t
DRI

J=1

Determining the diffusion coefficient is more
difficult and requires a trial-and-error solution
beginning with an assumed value for D, and a means
of convergence. A general solution to the mass
diffusion equation (1) is the Fourier solution in
which generality is provided by specifying the ini-
tial distribution through the coefficients, a.
That is,

n(x,t)

242
- - Gll%gg + s)t .
_ -Rt mwx ia
= age + Z_; a, cos 7 e . 27
n=
Then the following relationships are determined:

on(x,t,D)

at

_(fzsz)t
- 2.2 2
= -aORe Rt_z (w + R) a cos MTX e ¢ ,(28)

A

and

an(x,t,D)
9D

2,2
m“w<D
2.2 - 7 *‘R)t
=0 -E o ﬂzt a_cos E%E e ( £ .

rallt (29)

Multiplying Eq. 29 by % and subtracting Eq. 28

gives,

b @
t,X D,x

or
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and then,

3D D

aD =¢;9 An = an An. (31)

' + [
t Rn 3t

Finally, Eq. 31 is weighted by mass, summed over

all nodes, and normalized, giving
JMAX
nJ AnJ
D~ In
Rn, * [+
J-1 J It I
D = JMAX ’ (32)
1
t' . nJ

J=1

a

where the values AnJ are the difference between the
desired measured values and the latest calculation

trial at t', and the values (an/at)J are taken from
the last time step of the calculation. It is re-

quired that

[RHJ . (%)J] ‘

to prevent divergence.
that,

Further, solution requires

for all nodes. The calculation is redone using
better values of D through Eq. 32 until this
occurs.

This technique was checked by inputting re-
sults (two concentration distributions) from a pre-
vious run. The program calculated the evaporation
coefficient and converged upon the diffusion co-
efficient in five cycles to an acceptable degree
of accuracy.

The third case solved by the program is the

"hot-point" problem. Beginning with a bare wire,

mass is deposited on a central point of the wire

at each time step according to,

_ rit

bn; = Fax -

Two points at the ends of the wire are then main-

tained at zero concentration (the last node, or

evaporation point),

nJMAx = 0.

The rate of flow out of each hot point is just,

62 ( n )
Ax JMAX-1  JMAX

Figures 5, 6, and 7 show plots of the hot-
point evaporation rate versus time for indium on
gas-covered tantalum at 350, 400, and 500°K. In-
dium was deposited at the rate of 500 molecules per
second, and evaporated at two points 3 cm from the
deposition point. These curves are characteristic

of the estimated diffusion coefficients.

300 T T T T

[N

o

o]
T

1

T=350K
D= 3.5x10* cM2 sec —
R+ 83x10' sec’

EVAPORATION RATE (MOLECULES/ SEC)
8
T

0 1 1 1 1
[¢] 1x10* 2x104 3x104 4xi0* 5x10*

TIME (SEC)
Fig. 5. "Hot-Point" problem for indium on tantalum
at 350°K.
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Fig. 6. '"Hot-Point" problem for indium on tantalum

at 400°K.
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CODE INPUT

(Cases of any type may be run back-to-back.)

First Card - format (20A4)
Title card consisting of up to 79 alphanumeric

characters preceded by a "1" punch in column 1.

Second Card - format (16I5)
NTYPE - 0 - gives a diffusion run with all .
quantities known
1 - gives convergence of diffusion
and evaporation coefficients
given two concentration distribu-
tions
2 - the "hot-point" problem
NMAX - the maximum number of time steps
allowed
NPRINT - the printing frequency in number of

time steps

IMAX - the maximum number of iterations per
time step

JMAX - the initial number of nodes on the
wire

JADD - the number of nodes to be added at

the end of each time step, depending
upon EPS4. NOTE: if NTYPE = 2, JADD

must = 0.

Third Card - format (8El10.3)

D - diffusion coefficient
R - evaporation coefficient
DT - time step

DXI - node spacing

10

DELT - maximum time allowed, or time between

input distributions

Fourth Card - format (8E10.3)

B - Liebmann parameter

EPS1 - iterative concentration convergence
criterion

EPS2 - allowable standard deviation of total

mass, final-calculated and experimen-
tal, for NTYPE = 1

EPS3 - prevents blowup in recalculation of
the diffusion rate

EPS4 - concentration criterion determines
the JMAX node adjustment NOTE: EPS4
must be negative for NTYPE = 2.

EPSS - check on DELT

EPS6 - linearity limit, 1 + RAt

Fifth Card - format (8E0.3)

For the case NTYPE = 0, input

X3(J) - the initial concentration distribu-
tion for JMAX nodes
For NTYPE = 1, input (as separate
blocks)

X3(J) - the initial concentration distribu-
tion for JMAX nodes, and

X4(J) - the final distribution
For NTYPE = 2, input

RIN - rate of mass deposited on the wire

Sixth Card, etc. - format (8E10.3)

Continuation of fifth card if required.

NOMENCLATURE

a Fourier square-wave width

ay Fourier series coefficients

D Surface mass diffusion coefficient, cm? sec™?

e Natural logarithm base

I Iteration number

J Node number

n Linear mass concentration, molecules cm-!

N Total mass on the wire, molecules

r Rate of mass deposited on the wire, molecules
sec~!

R Evaporation coefficient, sec™!
Time, sec

t' - Time interval between measured distributions

u Transformation variable

X Linear distance, cm



Liebmann parameter

Correction to the diffusion coefficient
Difference between theoretical and measured
concentrations

Time step, sec

Node spacing, cm

Concentration convergence criterion
Allowable standard deviation of total mass
Prevents blowup in diffusion rate
Concentration criterion for extending nodes
Check on DELT

Linearity criterion

Evaporation rate, molecules sec™!
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